tranz22

Транзистору скоро исполнится 100 лет. Этот компонент на долгое время стал основой всей электроники 20 века. В настоящее время он тоже остаётся важной частью электронных схем, хотя внешняя форма исполнения изменилась: часто отдельные транзисторы объединяются в микросхемы и процессоры. В одной микросхеме может находиться несколько сотен и даже тысяч микроскопических транзисторов.

Что представляет собой транзистор как таковой? По сути, он почти ничем не отличается от обычного диода – электронного компонента, пропускающего ток только в одном направлении. В отличие от него, у транзистора есть дополнительный вывод, который «открывает» и «закрывает» прибор. Действительно, это очень похоже на водопроводный кран.

Транзисторы

Только управляется этот кран тем же самым током. Если транзистор имеет тип PNP (прямой), то этот дополнительный вывод открывается подачей отрицательного сигнала, а если NPN (обратный), то положительного. Дополнительный вывод именуется базой, входной вывод – эмиттером, а выходной – коллектором. В PNP-транзисторе ток течёт от плюса к минусу, а в NPN – в обратном направлении.

Впрочем, транзистор отличается от диода не только этим. Он обладает ещё и усиливающими свойствами. Поэтому усилительная аппаратура – одно из основных применений этого компонента.

Как устроен биполярный транзистор

Все транзисторы делятся на два основных типа – биполярные и полевые. Биполярные транзисторы – самые распространённые. Они состоят из трёхслойных полупроводников, каждый слой которых соединяется с внешним выводом через металло-полупроводниковый контакт. Средний слой обычно используется в качестве базы. Эмиттер и коллектор – это два крайних слоя, соединённые с соответствующими выводами.

Устройство биполярного транзистора

Устройство биполярного транзистора

На схеме эмиттер изображается выводом со стрелкой, которая показывает направление движения тока.

Управление биполярным транзистором осуществляется путём подачи на базу определённого напряжения – положительного (для NPN) и отрицательного (для PNP). Изменяя значение этого напряжения, можно в большей или меньшей степени открывать «кран».

Биполярные NPN-транзисторы пользуются большей популярностью, поскольку в них основная роль отводится электронам, а не дыркам (положительным условным частицам). Электроны имеют в несколько раз большую подвижность, чем дырки, поэтому обратные транзисторы работают лучше и быстрее.

Устройство полевых транзисторов

Полевые транзисторы устроены немного по-другому. Здесь управление работой прибора осуществляется с помощью электрического поля, которое направлено перпендикулярно току. Подобно биполярным транзисторам, полевые тоже имеют три вывода, которые, правда, называются иначе: исток, сток и затвор. Электрическое поле создаётся с помощью определённого напряжения, приложенного к затвору, который служит аналогом базы биполярного транзистора.

Устройство полевого транзистора с p-n-переходом

Устройство полевого транзистора с p-n-переходом

Также у полевого транзистора имеется проводящий слой, который называют каналом. По нему и течёт ток. Канал может быть N или P-типа, а также иметь различную пространственную конфигурацию. Каналы могут быть обогащёнными носителями или обеднёнными.

Существуют полевые транзисторы с управляющим p-n-переходом и с полностью изолированным затвором.

Устройство полевого транзистора с изолированным затвором

Устройство полевого транзистора с изолированным затвором

Что общего между этими устройствами?

Понятно, что и то, и другое – это транзисторы. У каждого есть три вывода, один из которых является управляющим. в зависимости от того, какой сигнал на него подан, ток по транзистору или будет течь, или не будет. Отличаются эти устройства лишь нюансами работы, однако таких нюансов достаточно много.

Отличия биполярных и полевых транзисторов

Полевые транзисторы более предпочтительны по большинству параметров:

  1. У них более высокое быстродействие.
  2. Они имеют маленькие потери на управление.
  3. У полевых транзисторов значительно более высокие усилительные способности.
  4. Они производят меньше шума и потребляют малую мощность.

Однако полевые транзисторы не переносят статического напряжения. Этим их использование и ограничивается, ведь в электронных устройствах оно накапливается постоянно. Там, где необходимо применять полевые транзисторы, необходимо предусмотреть их защиту от статического напряжения.

Как бы то ни было, полевые транзисторы почти полностью вытеснили биполярные из цифровой техники. В аналоговой, наоборот, пока что господствуют биполярные.

Изобретение полевых транзисторов, собственно, и было связано с производством электронно-вычислительных машин. В 1977 году учёные обнаружили, что с их помощью можно ускорить работу компьютерной техники. С этого времени транзисторы нового типа стали находить широкое применение – начиналась эра цифровых устройств.

Относительно недавно, в 1990-х годах, появился ещё один, «гибридный» тип таких компонентов. Это биполярные транзисторы с изолированным затвором, или IGBT. Такой прибор, по сути, является сочетанием биполярного транзистора, играющего роль силового канала, и полевого, являющегося управляющим элементом. Благодаря этому удалось совместить в одном компоненте выгодные выходные показатели (как у биполярного устройства) с предпочтительными входными (как у полевого). Управляются IGBT, как и полевые транзисторы, с помощью электрического поля.

Применяются гибридные компоненты в различных преобразователях, инверторах, импульсных регуляторах тока и т.д.

Добавить комментарий

Ваш e-mail не будет опубликован. Поля,обязательные для заполнения отмечены *

Вы можете использовать HTML теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

не отправлять комментарийОтправить